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CL A SSICAL PROBABILITY THEORY gives all sequences of 
fair coin tosses of the same length the same 
probability. On the other hand, when considering 
sequences such as

101010101010101010101010101 010101010. . .

and

1011010111010101111000010101 00010111. . . ,

none but the most contrarian among us would deny 
that the second (obtained by the first author by tossing 
a coin) is more random than the first. Indeed, we 
might well want to say that the second sequence is 
entirely random, whereas the first one is entirely 
nonrandom. But what are we to make in this context 
of, say, the sequence obtained by taking our first 
sequence, tossing a coin for each bit, and if the coin 
comes up heads, replacing that bit by the 
corresponding one in the second sequence? There are 
deep and fundamental questions involved in trying to 
understand why some sequences should count as 
“random,” or “partially random,” and others as 

“predictable,” and how we can transform 
our intuitions about these concepts into 
meaningful mathematical notions.

One goal of the theory of algorith-
mic randomness is to give meaning to 
the notion of a random individual (infi-
nite) sequence. Questions immediately 
arise: How should we define random-
ness? How can we measure whether one 
sequence is more random than another? 
How are computational power and ran-
domness related? Is a theory of random-
ness for individual sequences at all 
useful? How does such a theory relate to 
classical probability theory?

The modern development of the the-
ory of algorithmic randomness goes back 
to the 1960s (with even earlier roots, as 
we will discuss), but there has been a 
particular surge of development in the 
last couple of decades. In this article, 
we hope to give some of the flavor of 
this work, though we will be able to 
mention only a few samples of what is 
by now a vast area of research. Our 
book,11 for example, is over 800 pages 
long and still manages to cover only a 
fraction of the area … Another book cov-
ering some of the work we discuss here 
is Nies.35 Li and Vitányi27 is broader in 
scope and focuses more on Kolmogorov 
complexity of finite strings.

For simplicity, we assume sequences 
are binary unless we say otherwise. We 
use the terms sequence for an infinite 
sequence and string for a finite one. We 
write |σ| for the length of a string σ, 
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randomness. For example, a ran-
dom sequence should be normal in 
the sense of the previous section. 
However, that is not a sufficient condi-
tion, as the aforementioned sequence 
is known to be normal to base 2, but is 
highly predictable.

In 1919, Richard von Misesa attempted 
to give a definition of randomness for a 
sequence X based upon a generaliza-
tion of the law of large numbers. His idea 
was to require normality not only of X 
itself, but also of (certain) infinite sub-
sequences of X. The point here is that 
the base 2 Champernowne sequence 
is normal, but if we computably select 
every -th bit 
of this sequence, the resulting subse-
quence 1111 … is no longer normal. It 
is not reasonable that selecting such 
bits of a random sequence should 
result in all 1s, so our sequence fails 
this randomness test.

Von Mises generalized this idea as 
follows. Let f : N → N be an increasing 
function. We think of f as a selection 
function for determining a subse-
quence of a given sequence. That is, f (i) 
is the ith place selected in forming this 
subsequence. In the law of large num-
bers itself, where we consider the 
entire sequence, f (i) = i. In the nonran-
domness argument in the previous 
paragraph, f (i) = g(i). Von Mises pro-
posed replacing the ratio 

 coming from the law 
large numbers by

the ratio of the number of selected places 
at which X has value 1 to the total num-
ber of selected places. For base 2 and 
each choice of f, the requirement that 
this ratio approach  as s goes to infin-
ity constitutes a randomness test.

So when should X be regarded as ran-
dom? We could perhaps try to say that X 
is random if and only if it passes this 
test for all possible selection functions, 
reflecting the idea that in a sequence of 
coin tosses, there should be no way to 
select a subsequence ahead of time that 
will have a greater proportion of heads 
than tails. There is a big problem with 
this idea, though. No sequence X can be 
random for all selection functions. As 

a	 See Downey and Hirschfeldt11 for references to 
this and other sources mentioned in this section.

write X(n) for the nth bit of the sequence 
X (beginning with the 0th bit X(0) ), and 
write Xn for the string consisting of 
the first n bits of X. We identify a real 
number x in the interval [0, 1] with the 
binary sequence X such that x = 0.X. 
There are reals that have two binary 
expansions, but they are all rational 
and will not be relevant.

Historical Roots
Borel. In the beginning of the 20th cen-
tury, Émile Borel was interested in se-
quences that satisfy the (strong) law of 
large numbers, which says that if we re-
peat an experiment with a numerical 
result many times, the average value of 
the result should be close to its expect-
ed value. If we toss a fair coin many 
times, for example, we expect the fre-
quency of heads to be about . Let X be 
a sequence representing infinitely 
many such tosses. After s many coin 
tosses, we can see how we are doing so 
far by looking at how many heads we 
have seen in the first s tosses compared 
to s, that is, the ratio

where we think of a 1 as representing 
heads. If this is indeed a fair coin, this 
ratio should get closer and closer to  
as s increases. Moreover for the strong 
law, any length k subsequence, such as 
1011 (of length 4), should appear with 
frequency approaching .

More generally, we say that an n-ary 
sequence sequence X is (Borel) normal 
if it has the same property relative to an 
“n-sided coin,” in other words, if for 
any length m sequence σ = a1a2 … am of 
digits between 0 and n − 1,

Borel defined a real number to be nor-
mal to base n if its base n representation 
is normal, and absolutely normal if it is 
normal to every base. Borel observed 
that almost every real number is abso-
lutely normal. Mathematically, this fact 
can be expressed by saying the collec-
tion of absolutely normal numbers has 
Lebesgue measure 1, which corresponds 
to saying that if we threw a dart at the 
real line, with probability 1, it would hit 
an absolutely normal number. We 

would thus expect a random sequence 
to be normal, and indeed (recalling that 
we identify the sequence X with the real 
number 0.X) we would expect a random 
sequence to be absolutely normal.

Von Mises and Ville. The late 1920s 
and early 1930s saw the development, 
particularly by Andrey Kolmogorov, of 
an adequate foundation for probability 
theory, using measure theory and 
based on the idea of the expected 
behavior of events in a probability 
space. This theory does not give any 
meaning to the idea of randomness of 
an individual object, such as a particu-
lar sequence of coin tosses. Tossing a 
fair coin n times takes place in a “space 
of possibilities” (in this case, the col-
lection of all binary strings of length n), 
and we assign any sequence of length n 
the probability 2−n of occurring. For 
example, as we are taught in school, 
any particular sequence of three coin 
tosses occurs with probability .

In the infinite case, we might look at 
the event that a sequence has a certain 
string, say 101, as an initial segment. 
The probability that we begin a 
sequence of coin tosses with heads, 
tails, heads is . The mathemati-
cal way to express this fact is that the 
(uniform) measure (also known as the 
Lebesgue measure) of the set of 
sequences beginning with 101 is 2−3, or, 
more generally, the measure of the set 
of sequences beginning with any par-
ticular string of length n is 2−n. 
Probability theory is of course a vast 
and complex field, but for our pur-
poses, this simple example suffices.

It is less commonly known that 
Kolmogorov’s work came after earlier 
attempts to give meaning to the notion 
of randomness for individual objects 
such as infinite sequences. This idea 
is completely contrary to the approach 
in which all sequences are equally likely, 
but is quite reasonable when think-
ing about the difference between 
sequences like the two that open this 
article. The question is how to differ-
entiate between a sequence like 01101
110010111011110001001101010111100..., 
the base 2 version of Champernowne’s 
sequence, obtained by listing the 
binary representations of the natural 
numbers in order and clearly nonran-
dom, and one arising from a random 
source. There are tests we can apply to 
a sequence to try to verify its apparent 
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any nontrivial X has infinitely many 0s, 
there is an f that chooses the positions 
of the 0’s of X in increasing order. But 
surely this counterexample is unfair to 
the spirit of von Mises’ idea: we are try-
ing to capture the notion that we should 
not be able to predict the values of bits of 
X, and this f is chosen after defining X. 
It is always easy to predict the answer if 
you know it in advance! The question 
then is what kinds of selection func-
tions should be allowed, to capture the 
notion of prediction. A reasonable intu-
ition is that prediction is somehow a 
computational process, and hence 
from a modern perspective we might 
want to restrict ourselves to computable 
selection functions, a suggestion later 
made by Alonzo Church.

Von Mises’ work predated the defi-
nition of computable function, how-
ever, so he had no canonical choice of 
“acceptable selection rules” and left his 
definition mathematically vague. But 
Abraham Wald showed that for any 
countably infinite collection of selec-
tion functions, there is a sequence 
that is random in the sense of passing 
all tests corresponding to the func-
tions in this collection.

However, von Mises’ program was 
dealt a major blow in 1939 by Jean 
Ville, who showed that for any count-
able collection of selection functions, 
there is a sequence X that passes all of 
the resulting tests, but such that for 
each n, there are always more 0s than 
1s in Xn. If we were told that there 
would always be more tails than heads 
in a sequence of coin flips, we would 
not believe the coin to be a standard 
one, and could use this information to 
make some money betting on its flips. 
Thus, Ville’s sequence is random in 
the sense of von Mises, but certainly 
not random in the intuitive sense.

Ville suggested adding versions of 
another law (the law of the iterated log-
arithm) to the list of tests that a 
sequence would need to pass to be con-
sidered random. Perhaps von Mises’ 
tests together with these additional 
tests would capture the notion of algo-
rithmic randomness. But this all begins 
to look very ad hoc, and immediately 
raises the natural question of whether 
there is a Ville-like counterexample for 
this new set of laws. (As it turns out, 
there is, as discussed, for example, in 
Downey and Hirschfeldt.11)

Notice that in these discussions, we 
are abandoning the idea of absolute ran-
domness in some metaphysical sense in 
favor of a notion of algorithmic random-
ness, where we use tools from comput-
ability theory to define and quantify 
randomness. Abandoning absolute ran-
domness leads to the idea of “levels of 
randomness” that can be defined by cali-
brating the computability theoretic com-
plexity of the tests we require our random 
sequences to pass. But, of course, follow-
ing Ville’s work it was not clear that even 
one reasonably robust level of algorith-
mic randomness could be defined.

Martin-Löf. This is how matters 
stood until 1966 and the work of Per 
Martin-Löf, who effectivized the notion 
of null set from classical measure the-
ory and gave a satisfying definition of 
algorithmic randomness based on this 
effectivization. The basic idea is that a 
random sequence should not have any 
“rare” property, that is, that if we find a 
way to distinguish and describe a small 
collection of sequences, then no ran-
dom sequence should be in our collec-
tion. The notion of null set allows us to 
make precise what we mean by “small.”

Randomness tests like those sug-
gested by von Mises are computable ways 
to narrow down which sequences can be 
considered random. For example, con-
sider sequences like 0101… that have 
0’s in all even places. We do not want 
such “bad” sequences to be considered 
random. To test whether a sequence 
has this form, we take a “level-by-level” 
approach: Given a sequence X, we ask 
whether X(0) = 0. If so, then X fails the 
first level of our test. (That is, it fails to 
demonstrate so far that it is not a bad 
sequence.) Note that half of all sequences 
X have X(0) = 0, which can be formalized 
by saying that the set of sequences X with 
X(0) = 0 has measure .

Next, we ask whether X(0) = 0 and 
X(2) = 0. If so, then X fails the second 
level of our test. The proportion of all 
sequences X that fail this second level 
is . We continue in this fashion, test-
ing more and more even places. A 
sequence X is one of our bad sequences 
if and only if it fails all levels of our 
test. The fact that the set Tn of 
sequences that fail the nth level of our 
test has measure 2−n implies the set of 
bad sequences, which is the intersec-
tion of all the Tn’s, has measure 0, that 
is, that it is what we call a null set.

We are abandoning 
the idea of absolute 
randomness in 
some metaphysical 
sense in favor 
of a notion of 
algorithmic 
randomness, where 
we use tools from 
computability 
theory to define 
and quantify 
randomness. 
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for present-day investigations of individ-
ual random sequences, dimensions of 
individual sequences, measure and cat-
egory in complexity classes, etc.”

In summary, Martin-Löf reformu-
lated all the laws that we would expect 
a random sequence to obey at an 
abstract level, based upon the idea of 
effectivizing measure theory, that is, 
making a computable version of mea-
sure theory. The measure of a set of 
sequences is the mathematical version 
of the probability that a sequence is in 
this set. Martin-Löf randomness says 
we regard X as random if and only if it 
passes each computably generated test 
that determines a set of computable 
measure 0 (as the intersection of the 
levels of the test). Such an X has every 
property that we can algorithmically 
describe as a set of probability 1.

Solomonoff, Kolmogorov, Levin, 
Chaitin, and Schnorr. There are other 
approaches to a definition of algorith-
mic randomness. For (finite) strings, a 
suitable definition was formulated by 
Kolmogorov, who argued that if a string 
has identifiable regularities, then we 
should be able to compress it, and that 
a compressible string should not be 
thought of as random. Here, we think 
of a machine M as a descriptional pro-
cess. If an input t is processed by M to 
yield an output σ, then t is a description 
of σ, that is, a program that M can use 
to print σ. A random σ should have no 
short descriptions.

As an illustration, consider the 
sequence σ = 010101010… (1000 
times). A short description t of σ is 
“print 01 1000 times.” This brief pro-
gram produces an output of length 
2000. We are exploiting the regularities 
of this particular σ to compress it into a 
short description. Kolmogorov’s intu-
ition was that for a random sequence, 
there should be no regularities, so that 
the only way to describe σ is to essen-
tially use σ itself. More precisely, a 
string of length n should be random 
relative to some descriptional process 
if and only if its shortest description 
has length n. Like white noise, a ran-
dom string should be incompressible.

To give a physical analogue of this 
idea, suppose we have a maze shaped 
like a binary tree of height 6, with 
boxes at the end. There are 26 possible 
routes to get to the boxes. One of the 
boxes has money in it, and someone is 

Martin-Löf’s approach was to gener-
alize this process by considering all pos-
sible level-by-level procedures for testing 
randomness. We can think of such a 
procedure as being generated by a 
machine M. At each level n, this machine 
determines a set Tn of sequences that 
are deemed to have failed the test so far. 
It does so by enumerating strings 

, where we then let Tn be the col-
lection of all sequences that begin with 
some . Of course, M needs to be fair 
and not, say, consider all sequences to 
be nonrandom, so we insist that, like in 
the above example, Tn contains at most 
a proportion 2−n of all sequences (which 
we can formalize by saying that the 
measure of Tn is at most 2−n). Now a 
sequence X fails M’s test if it is con-
tained in every Tn, and otherwise it 
passes this test.

We say that a sequence is Martin-Löf 
random if and only if it passes all such 
tests.b It can be shown that almost all 
sequences are Martin-Löf random (that is, 
that the collection of Martin-Löf random 
sequences has measure 1). Furthermore, 
Martin-Löf’s notion of tests includes the 
ones proposed by von Mises (in the spe-
cific realization suggested by Church), 
the ones proposed by Ville, and indeed 
all “algorithmically performable” ran-
domness tests. Thus, the objection to the 
idea of adding more and more specific 
tests as we uncover more and more Ville-
like sequences is neatly circumvented.

As it turns out, Martin-Löf random-
ness is also quite well-behaved mathe-
matically, and has provided a robust 
basis for the theory of algorithmic ran-
domness. As Jack Lutz put it in a lecture 
at the 7th Conference on Computability, 
Complexity, and Randomness, held in 
Cambridge in 2012 (in connection with 
work of Turing that we will discuss 
later),  “Placing computability constraints 
on a nonconstructive theory like Lebesgue 
measure seems a priori to weaken the 
theory, but it may strengthen the theory 
for some purposes. This vision is crucial 

b	 Formally, a Martin-Löf test is a collection 
S0, S1,… of uniformly computably enumer-
able sets of strings such that, if we let Tn be 
set of all sequences that begin with some 
element of Sn, then Tn has measure at most 
2−n. (The notion of computable enumerabil-
ity is also known as recursive enumerability.) 
A sequence X passes this test if .  
A sequence is Martin-Löf random if it passes all 
Martin-Löf tests.

The measure of a 
set of sequences is 
the mathematical 
version of the 
probability that  
a sequence is in  
this set.  
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to tell us which. If the box is the left-
most one, all they have to say is 
“always turn left.” If the box is to be 
found by say, left-right-left, this path 
is again easy to describe. If the place 
of the prize is determined randomly, 
though, the person would likely need to 
tell us the whole sequence of turns. (Li 
and Vitányi27 report on an experiment 
of this kind about ant communica-
tion.) This compressibility approach 
gives rise to what is now called 
Kolmogorov complexity. For a Turing 
machine M, the Kolmogorov complex-
ity CM(σ) of σ relative to M is the length of 
the shortest t such that M(t) = σ. We can 
then take a universal Turing machine U, 
which can emulate any other given 
machine M with at most a constant 
increase in the size of programs, and 
define the (plain) Kolmogorov com-
plexity of σ to be C(σ) = CU(σ).

A natural guess is that a sequence 
X is random if and only if for all n, the 
first n bits of X are incompressible in 
the sense outlined earlier. As it turns 
out, however, plain Kolmogorov 
complexity is not quite the correct 
notion for infinite sequences. (The 
reason is that in the above account, 
M can use more than just the bits of t 
to generate σ. It can also use the 
length of t, which provides an addi-
tional log|t| many bits of informa-
tion. Using this idea, Martin-Löf 
showed that for any X, and any con-
stant c, the plain Kolmogorov com-
plexity of Xn must always dip below 
n−c for some lengths n.)

There are several ways to modify the 
definition of Kolmogorov complexity to 
avoid this issue, the best-known being 
to use prefix-free codesc and the result-
ing notion of prefix-free Kolmogorov 
complexity, denoted by K in place of C. 
Its roots are in the work of Leonid 
Levin, Gregory Chaitin, and Claus-
Peter Schnorr, and in a certain sense 
even earlier in that of Ray Solomonoff. 
As shown by Schnorr, it is indeed the 
case that X is Martin-Löf random if and 
only if the prefix-free Kolmogorov com-
plexity of the first n bits of X is at least n 
(up to an additive constant), that is, 
K(Xn)  n – O(1).

c	 That is, descriptions that are like telephone 
numbers in that if t and ρ are input descrip-
tions to M and both give outputs, then t is not 
a prefix of ρ.

(There are many other flavors of 
Kolmogorov complexity, such as time- 
and space-bounded ones, but C and K 
have been the most studied. They have 
a complex relationship. It is easy to 
show that K(σ)  C(σ) + 2log σ + O(1). 
Robert Solovay proved the remarkable 
fact that K(σ) = C(σ) + C(C(σ) ) + O(C(3) 
(σ) ) and this result is tight in that we 
cannot extend it to C(4)(σ). There is a 
huge amount of research on the 
Kolmogorov complexity of finite strings 
and its applications. See, for instance, 
Li and Vitányi.27)

Returning to the story of the defini-
tion of algorithmic randomness, there 
is another approach, developed by 
Schnorr, that is close in spirit to von 
Mises’ ideas. A martingaled is a func-
tion d from strings to nonnegative reals 
satisfying a fairness condition:

We think of d as representing a betting 
strategy. We begin with some capital 
d(l), where l is the empty string, and 
bet on the values of the successive bits 
of a sequence X so that the amount of 
money we have after n many bets is 
d(Xn). We are allowed to hedge our 
bets by betting some amount of our 
capital on 0 and the rest on 1. The dis-
played equation ensures that this bet-
ting is fair, that is, that the average of 
the returns of our bets on 0 and on 1 
equals our current total. A martingale d 
succeeds on a sequence X if and only if 
the associated betting strategy allows 
us to make arbitrarily much money 
when betting on the bits of X, that is, 

 Schnorr showed 
that there is a notion of effective mar-
tingale such that X is Martin-Löf ran-
dom if and only if no such martingale 
succeeds on X. This idea is close to von 
Mises’ prediction-based approach, 
except that martingales allow us to 
spread our bets between the outcomes 
0 and 1, so von Mises’ intuition has a 
realization that works after all!

In summary, there are three basic 
approaches to defining random seq
uences: the statistician’s approach, 
that a random sequence should have 
no computably rare properties; the 
coder’s approach, that a random 

d	 This notion is related to but distinct from that 
of martingale in probability theory.

sequence should have no regularities 
that allow for compression; and the 
gambler’s approach, that a random 
sequence should be unpredictable. In 
each of these cases, a natural effective 
realization leads to the same notion, 
Martin-Löf randomness.

Some Things We Have Learned
Calibrating randomness. As natural 
and robust as Martin-Löf’s definition of al-
gorithmic randomness is, it is only one 
among many reasonable notions that 
together allow us to calibrate levels of 
randomness. One way to obtain new 
notions of randomness is to change the 
collection of tests a sequence is required 
to pass to be considered random. For 
instance, we can consider Martin-Löf 
tests with computable measures (that 
is, where the measure of each level Tn is 
exactly 2−n, for instance), yielding a notion 
called Schnorr randomness. Another 
possibility is to use martingales with 
different levels of effectiveness, such 
as ones that are computable functions 
from strings to nonnegative rationals, 
which yields a notion called comput-
able randomness. Computable random-
ness can also be miniaturized to com-
plexity classes, giving rise to notions 
such as polynomial-time randomness.

It can be shown that Martin-Löf ran-
domness implies computable random-
ness, which in turn implies Schnorr 
randomness, and that neither of these 
implications can be reversed. But the 
separations between these notions are 
quite subtle, and indeed the notions 
coincide for sequences that are in a sense 
“close to computable.” (More precisely, 
they coincide outside what are known as 
the high sequences, which resemble 
the Halting Problem in a certain tech-
nical sense; see Nies et al.36) Indeed, 
there is a notion of nonmonotonic ran-
domness—which is like computable 
randomness but allows for strategies 
that can bet on the values of the bits of 
a sequence in any computable order—
for which equivalence to Martin-Löf 
randomness is still a long-standing 
open question.

We can also modify our tests to yield 
notions stronger than Martin-Löf ran-
domness. For instance, relaxing the 
condition that the nth level Tn of a 
Martin-Löf test must have measure at 
most 2−n, and requiring only that the 
measures of the Tn’s go to 0 as n goes to 
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can never have C(Xn)  n – O(1) for 
all n, but it is possible to have a sequence 
X such that C(Xn)  n – O(1) for infi-
nitely many n. Remarkably, Miller30 and 
Nies et al.36 showed that this condition 
is equivalent to 2-randomness. Miller31 
also proved a similar result saying that 
2-randomness also coincides with 
having infinitely often maximal initial 
segment prefix-free Kolmogorov com-
plexity. Indeed, it is possible to give 
characterizations of n-randomness for 
all n using unrelativized Kolmogorov 
complexity (see Bienvenu et al.8). These 
facts are examples of the often subtle 
interplay that recent research in this 
area has uncovered between levels of 
randomness, initial-segment complex-
ity, and relative computability.

Calibrating nonrandomness. For 
sequences that are not Martin-Löf 
random, there are ways to calibrate 
how close they come to randomness. 
A natural way to do this is to consider 
the (prefix-free) Kolmogorov com-
plexity of their initial segments. For 
example, a sequence X is complex if 
there is a computable, nondecreasing, 
unbounded function f such that K(Xn) 
 f(n) for all n. Complex sequences 
can be characterized in terms of their 
ability to compute certain sequences 
that resemble the Halting Problem 
to some extent (see Downey and 
Hirschfeldt11), which is another 
example of the interplay between ran-
domness and computability.

At the other extreme from random 
sequences are those with strong “anti-
randomness” properties. Identifying a 
natural number with its binary expan-
sion, we always have C(σ)  Cσ − 
O(1), because if we know a string, then 
we know its length. Thus, the lowest 
the plain Kolmogorov complexity of 
the initial segments of a sequence X 
can be is C(Xn)  C(n) + O(1). In the 
1970s, Chaitin showed that this condi-
tion holds if and only if X is comput-
able, and asked whether the same 
holds for prefix-free Kolmogorov com-
plexity. In an unpublished manuscript 
written in 1975, Solovay showed the sur-
prising fact that there are noncomput-
able sequences X such that K(Xn)  
K(n) + O(1) for all n, though Chaitin 
had already shown that there are only 
countably many of them, and indeed 
that they are all computable from the 
Halting Problem. Such sequences are 

infinity, yields the notion of weak 2-ran-
domness, which is intermediate between 
Martin-Löf randomness and the notion 
of 2-randomness discussed below.

In some ways, weak 2-randomness is 
better-behaved than Martin-Löf random-
ness. To give an example, let us begin 
by considering the fact that, although 
almost every sequence is Martin-Löf 
random, it is not that easy to come up 
with an explicit example. That is at it 
should be, of course. Easily describable 
sequences (such as computable ones, 
for example) should not be random. 
Nevertheless, such examples do exist, 
the best-known being Chaitin’s Ω, 
defined as the probability that a univer-
sal prefix-free Turing machine U halts 
on a given input,e or, more formally, as:

Although Ω is Martin-Löf random, it is 
also computationally powerful, being 
Turing equivalent to the Halting Problem.f

The existence of computationally  
powerful Martin-Löf random sequences 
is surprising, as intuitively we should 
expect random sequences not to con-
tain much “useful information.” (The 
distinction here is between the kind of 
information that makes a sequence 
hard to describe and the kind that can 
actually be used. If we choose 1,000 
characters at random, we expect the 
resulting text to be difficult to describe, 
but would be shocked to find that it 
contains instructions for making a 
soufflé.) However, not only is it possi-
ble for a Martin-Löf random sequence 
to compute the Halting Problem, but 
by the Kučera-Gács Theorem, every 
sequence can be computed from some 
Martin-Löf random sequence. (See, for 
example, Downey and Hirschfeldt11 for 
a proof.) By increasing the level of ran-
domness, we can make these “patho-
logical” examples disappear. If X is 

e	 The value of Ω depends on the choice of U, but 
its basic properties do not; see Downey and 
Hirschfeldt.11

f	 When we say that X can be computed from Y, 
we mean there is a Turing machine M with an 
oracle tape so that if the oracle tape contains 
Y, then M computes X. Two objects are Tur-
ing equivalent if each can be computed from 
the other. Turing’s Halting Problem is the 
classic example of a complete computably 
enumerable set; that is, it is itself comput-
ably enumerable, and it can compute every 
computably enumerable set.

weakly 2-random, then it cannot com-
pute the Halting Problem, or indeed, 
any noncomputable sequence that is 
computed by the Halting Problem, and 
hence in particular any noncomput-
able, computably enumerable set.

We do not have to go all the way to 
weak 2-randomness, though. There are 
results, beginning with work of Stephan,38 
that indicate that the Martin-Löf ran-
dom sequences split into two classes: 
powerful ones that can compute the 
Halting Problem, and weaker ones that 
exhibit much more of the behavior we 
expect of random sequences, and in 
particular are computationally much 
weaker than the sequences in the first 
class. Franklin and Ng17 showed that 
the level of randomness of these “true 
Martin-Löf randoms” can be captured 
by a natural test-based notion known 
as difference randomness. The study of 
notions of algorithmic randomness 
like this one, which are intermediate 
between Martin-Löf randomness and 
weak 2-randomness, has had an 
important role in recent research in 
the area, and helped us refine our 
understanding of the relationship 
between levels of randomness and 
computational power.

Another way to calibrate random-
ness is to relativize notions such as 
Martin-Löf randomness. For instance, 
we can consider Martin-Löf tests that 
are produced not by a standard Turing 
machine, but by a Turing machine 
with access to an oracle Z. If Z is the 
Halting Problem, for example, we 
obtain a notion called 2-randomness. 
More generally, we have a notion of 
n-randomness, where we relativize 
Martin-Löf tests to the (n − 1)st iterate of 
the Halting Problem.g Here, 1-random-
ness is just Martin-Löf randomness.

Much is known about this hierarchy, 
including some surprising facts. For 
example: As noted by Miller and Yu,33 it 
follows from a fundamental result 
about Martin-Löf randomness known 
as van Lambalgen’s Theorem (see 
Downey and Hirschfeldt.11) that if X is 
Martin-Löf random and is computed by 
an n-random sequence, then X is itself 
n-random. We have mentioned that we 

g	 The kth iterate of the Halting Problem is just 
the Halting Problem for Turing machines 
with the (k−1)st iterate of the Halting Problem 
as an oracle.
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said to be K-trivial, and have played a 
major role in the theory of algorithmic 
randomness. For those who know 
some computability theory, we men-
tion that Nies34 showed that the 
K-trivial sequences form an ideal in 
the Turing degrees, and that they can 
be seen as giving a priority-free solu-
tion to Post’s Problem (see Downey et 
al.12). Nies34 showed that these 
sequences are computability-theoretically 
weak, and gave several characteriza-
tions of K-triviality in terms of ran-
domness-theoretic weakness. For 
example, when we relativize the notion 
of Martin-Löf randomness to a non-
computable X, we expect the notion to 
change, as the noncomputability of X 
should yield some derandomization 
power. Nies showed that the K-trivial 
sequences are exactly those for which 
this intuition fails.

Many other characterizations of 
K-triviality have since been given. For 
example, results of Hirschfeldt et al.21 and 
of Bienvenu et al.6 show a computably 
enumerable set is K-trivial if and only 
if it is computed by a difference ran-
dom sequence (that is, one of the “true 
Martin-Löf randoms” that does not 
compute the Halting Problem). Recent 
work on K-triviality has also revealed 
subclasses of the K-trivials that can 
further help us understand the fine 
structure of the interaction between 
randomness and computability.

Considering the properties of 
sequences with differing levels of ran-
domness leads to the following heuris-
tic graph, where the horizontal axis 
represents randomness level and the 
vertical axis represents maximum 
computational power. (One can also 
think that the horizontal axis repre-
sents information content, whereas 
the vertical axis represents maximum 
useful information content.)

Among the sequences that are nei-
ther random nor highly nonrandom 
are ones that can be thought of as being 
“partially random.” For example, if Z is 
Martin-Löf random and we replace 
every other bit of Z by a 0, we obtain a 
new sequence Y such that K(Yn) is 
approximately . It makes sense to 
think of such a sequence as being “
-random.” More generally, we can think 

of the limit behavior of the ratio  
as a measure of the partial randomness 
of a sequence X. This ratio does not nec-
essarily have a limit, but we can look at

which both give us values between 0 
and 1.

These values are also central to the 
theory of effective dimension. In 1919, 
Felix Hausdorff introduced a notion 
of dimension that measures the “local 
size” of a set in a metric space, for 
example, a subset of the plane. Points 
have dimension 0, lines have dimen-
sion 1, and the whole plane has 
dimension 2, but there are also objects 
of fractional dimension, such as well-
known fractals like the Koch curve 
(which has Hausdorff dimension 
log3(4) ). Starting with the work of Jack 
Lutz in the early 2000s, the theory of 
dimension has been effectivized, ini-
tially in terms of effective martingales 
as in Schnorr’s approach to algorith-
mic randomness. This process has 
also been carried out for other notions 
of dimension, most notably that of 
packing dimension. An important fact 
here is that the effective Hausdorff 
dimension and effective packing 
dimension of a sequence X turn out to 
be exactly the liminf and limsup, 
respectively, in the equation explained  
above. Thus, these dimensions can be 
seen as measures of partial randomness. 
(See, for example,  see Downey and 
Hirschfeldt11 for details.)

The theory of effective dimen-
sion has also been extended to points 
on the plane and higher dimensional 
Euclidean spaces. A remarkable fea-
ture of this theory is that there is a tight 
correspondence between the classical 
Hausdorff dimension of a set and the 
effective Hausdorff dimension of its 
points. For a fairly wide class of sets 
S⊆Rn, Hitchcock22 showed that the 
Hausdorff dimension of S is the supre-
mum of the effective Hausdorff dimen-
sions of its individual elements, and 
Lutz and Lutz28 have now given versions 
of this result for arbitrary sets (and for 
both Hausdorff and packing dimen-
sion) using relativizations of effective 
dimension. It is surprising that the 
notion of dimension, which seems so 
clearly to be a global property of a set, 
based on its “overall shape,” can be 

A remarkable 
feature of the 
theory of effective 
dimension is 
there is a tight 
correspondence 
between the 
classical Hausdorff 
dimension of 
a set and the 
effective Hausdorff 
dimension of  
its points. 
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process where, instead of using com-
putable reductions, we simply seek to 
increase the randomness of a sequence 
by changing a relatively small propor-
tion of its bits. Greenberg et al.20 
recently gave precise bounds on the 
proportion of bits of a sequence of 
effective Hausdorff dimension s that 
need to be changed to increase the 
Hausdorff dimension to a given t > s, in 
terms of the binary entropy function 
from information theory. They also 
showed that if X has effective Hausdorff 
dimension 1, then X can be trans-
formed into a Martin-Löf random 
sequence by changing it only on the 
bits in a set S ⊂ N of density 0 (which 
means that ).

Turing and absolute normality. We 
return to Borel’s notion of normality. 
This is a very weak form of random-
ness; polynomial-time randomness is 
more than enough to ensure absolute 
normality, and indeed, it is known that 
a sequence is normal if and only if it sat-
isfies a notion of randomness defined 
using certain finite-state machines 
much weaker than arbitrary Turing 
machines. Borel asked whether there 
are explicit examples of absolutely 
normal numbers. It is conjectured that 
e, p, and all irrational algebraic num-
bers, such as , are absolutely normal, 
but none of these have been proven to 
be normal to any base. In an unpub-
lished manuscript, Alan Turing 
attacked the question of an explicit 
construction of an absolutely normal 
number by interpreting “explicit” to 
mean computable. His manuscript, 
entitled A Note on Normal Numbers and 
presumably written in 1938, gives the 
best kind of answer to date to Borel’s 
question: an algorithm that produces 
an absolutely normal number.

An interesting aspect of Turing’s 
construction is that he more or less 
anticipated Martin-Löf’s work by 
looking at a collection of comput-
able tests sensitive enough to make 
a number normal in all bases, yet 
insensitive enough to allow a com-
putable sequence to pass all such 
tests. We have seen that the strong 
law of large numbers implies fixed 
blocks of digits should occur with 
the appropriate frequencies in a ran-
dom sequence. Translating between 
bases results in correlations between 
blocks of digits in one base and 

completely understood by focusing on 
the individual elements of the set and 
understanding them from a comput-
ability-theoretic perspective. This 
correspondence is also quite useful, 
and can be used to obtain new proofs 
and results in areas such as fractal 
geometry, as in Lutz and Lutz28 and 
Lutz and Stull,29 for instance.

Randomness amplification can be 
investigated in many settings. A basic 
question is whether (a greater degree 
of) randomness can always be 
extracted from a partially random 
source. In our setting, effective dimen-
sion can be used to measure the 
degree of randomness, and extraction 
can be interpreted as relative compu-
tation. One way to think of this ques-
tion is that it is easy to decrease the 
effective dimension of a sequence in a 
computable way, say by changing a 
large proportion of its bits to 0’s, but it 
is less clear in general whether there is 
a way to reverse this process.

As it turns out, the answer depends 
on the notion of dimension. Fortnow 
et al.15 showed that if X has nonzero 
effective packing dimension and e > 0, 
then there is a Y that is computable 
from X such that the effective pack-
ing dimension of Y is at least 1 − e. (In 
fact, they showed that Y can be cho-
sen to be Turing equivalent to X via polynomial- 
time reductions, making the random-
ness amplification process quite 
efficient.) On the other hand, Miller32 
showed there is a sequence X of effec-
tive Hausdorff dimension  such 
that if Y is computable from X, then 
the effective Hausdorff dimension of 
Y is at most . (The specific value  
does not matter.) Greenberg and 
Miller19 showed that there is a 
sequence of effective Hausdorff 
dimension 1 that does not compute 
any Martin-Löf random sequence. Thus, 
we see there are some strong senses 
in which randomness amplification is 
not possible. However, Zimand40 
showed that, remarkably, if we have 
two sequences of nonzero effective 
Hausdorff dimension that are suffi-
ciently independent in a certain tech-
nical sense, then they together 
compute a sequence of effective 
Hausdorff dimension 1.

This is still an area of significant 
research interest. For example, we can 
ask about a randomness amplification 

It is surprising  
the notion  
of dimension,  
which means  
so clearly to be  
a global property 
of a set based on 
its “overall shape,” 
can be understood 
by focusing on the 
individual elements 
of the set and 
understanding 
them from a 
computability-
theoretic 
perspective.  
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blocks of digits in the other, which 
is why this extension allowed Turing 
to construct absolutely normal num-
bers. Turing made enough of classical 
measure theory computable to gen-
erate absolute normality, yet had the 
tests refined enough that computable 
sequence could still be “random.”

Turing’s construction remained 
largely unknown, because his manu-
script was published only in his 1997 
Collected Works.39 The editorial notes 
in that volume say the proof given by 
Turing is inadequate and speculate the 
theorem could be false. Becher et al.4 
reconstructed and completed Turing’s 
manuscript, preserving his ideas as accu-
rately as possible while correcting minor 
errors. More recently, there has been a 
highly productive line of research con-
necting algorithmic randomness, com-
putability theory, normal numbers, and 
approximability notions such as that of 
Liouville numbers; see, for instance, the 
papers listed at http://www-2.dc.uba.ar/ 
profesores/becher/publications.
html. Some of this work has yielded 
results in the classical theory of nor-
mal numbers, as in Becher et al.3

Some further applications. There 
have been several other applica-
tions of ideas related to algorithmic 
randomness in areas such as logic, 
complexity theory, analysis, and ergo-
dic theory. Chaitin used Kolmogorov 
complexity to give a proof of a ver-
sion of Gödel’s First Incompleteness 
Theorem, by showing that for any suf-
ficiently strong, computably axiomat-
izable, consistent theory T, there is 
a number c such that T cannot prove 
that C(σ) > c for any given string σ.h 
More recently, Kritchman and Raz25 
used his methods to give a proof of 
the Second Incompleteness Theorem 
as well. (Their paper also includes an 
account of Chaitin’s proof.) We can 
also ask about the effect of adding 
axioms asserting the incompressibil-
ity of certain strings in a probabilis-
tic way. Bienvenu et al.9 have shown 
that this kind of procedure does not 
help us to prove new interesting theo-
rems, but that the situation changes 
if we take into account the size of the 
proofs: randomly chosen axioms can 

h	 This fact also follows by interpreting an earlier 
result of Barzdins; see Example 2.7.1 in Li and 
Vitányi,27

help to make proofs much shorter 
under a reasonable complexity-theo-
retic assumption like P ¹ PSPACE.

Although not central to this article, 
we mention there are many appli-
cations of Kolmogorov complexity 
of finite strings, for example, ones 
that go under the collective title of 
the incompressibility method. The 
idea is that algorithmically random 
strings should exhibit typical behav-
ior on computable processes. For 
example, this method can be used to 
give average running times for sort-
ing, by showing that if the outcome 
is not what we would expect, we can 
compress a random input (which is 
now a single algorithmically random 
string). Chapter 6 of Li and Vitányi27 
is devoted to this technique, applying 
it to areas as diverse as combinator-
ics, formal languages, compact rout-
ing, and circuit complexity, among 
others. Another example is provided 
by the insight that the Kolmogorov 
complexity C(x|y) of a string x given 
y as an oracle is an absolute measure 
of how complex x is in y’s opinion. 
Historically, researchers comparing 
two sequences x, y of, for example, 
DNA, or two phylogenetic trees, or 
two languages have defined many 
distance metrics, such as “maximum 
parsimony” in the DNA example. 
But it is natural to use a measure 
like max{C(x, y), C(y, x)}, if the 
sequences have the same length, or 
some normalized version if they do 
not. Then we know absolutely what 
information the strings have in com-
mon, and do not have to hand-tool a 
notion of distance for the application. 
Although C is incomputable, Vitányi 
and others have used computable 
approximations (such as Lempel-Ziv 
compression) to C to investigate gen-
eral tools for understanding com-
mon information. (See, for example, 
Bennett et al.5) Another application is  
learning theory and logical depth, 
a notion introduced by Bennett to 
capture the idea that something is 
hard to describe in limited time. For 
applications to deep learning, see, 
for example, https://www.hectorzenil.
net/publications.html.

Randomness is used in many 
algorithms to accelerate computa-
tions, as in the use of randomness 
for primality testing by Solovay and 

Strassen,37 and there are problems 
like polynomial identity testing—which 
asks whether a polynomial in many 
variables is identically zero—for 
which there are efficient algorithms 
if we have a randomness source, but 
no known fast deterministic algo-
rithms. It is thought that a wide class 
of randomized algorithms can be 
derandomized to yield determinis-
tic polynomial-time algorithms, fol-
lowing the work of Impagliazzo and 
Wigderson,23 who showed that if cer-
tain problems are as hard as we think 
they are, then we can provide enough 
randomness efficiently to derandom-
ize problems in the complexity class 
BPP. Bienvenu and Downey7 have 
shown that randomness can always 
be used to accelerate some computa-
tions. They showed that if X is Schnorr 
random, then there is a computable 
language L such that X can compute 
L (in exponential time) via a computa-
tion ΦX (that is, a Turing machine Φ 
with oracle X) so that for any Turing 
machine M that computes L, the com-
putation ΦX is faster than M by more 
than a polynomial factor. (That is, ΦX 
computes L in time f, and there are no 
Turing machine M and polynomial p 
such that M computes L in time p  f.)

Another connection with com-
plexity theory comes from looking at 
the computational power of the set 
of random strings. There are a few 
reasonable ways to define what we 
mean by this set; one of them is to 
consider the strings that are incom-
pressible in the sense of plain 
Kolmogorov complexity, that is R = 
{σC(σ)  σ}. It turns out to be par-
ticularly interesting to consider 
what sets can be reduced to this one 
via polynomial-time reductions. For 
instance, Allender et al.1 showed 
that the complexity class PSPACE is 
contained in the collection of sets 
that are polynomial-time reducible 
to R, and other connections with 
complexity theory have been explored 
in this paper and others such as 
Allender et al.2

A particularly promising current line 
of research is the use of notions of algo-
rithmic randomness to give precise, 
“quantitative” versions of results about 
almost everywhere behavior in areas 
such as analysis and ergodic theory, an 
idea that goes back to the work of 
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Demuth in the 1970s.i For example, it is 
a result of basic analysis that every non-
decreasing function [0, 1] → R  is dif-
ferentiable at almost every x ∈ [0, 1] 
(that is, the set of x at which it is differ-
entiable has measure 1). Brattka et al.10 
showed that the reals x ∈ [0,1] such 
that every nondecreasing computable 
function (in the sense of computable 
analysis) is differentiable at x are 
exactly the computably random ones. 
Thus, computable randomness is 
exactly the level of randomness 
needed for this particular almost every-
where behavior to manifest itself. For 
other similar conditions, the relevant 
level of randomness can vary. For 
instance, for functions of bounded vari-
ation in place of nondecreasing ones, 
the corresponding level of randomness is 
exactly Martin-Löf randomness, as 
shown in Brattka et al10 as a recasting of 
a result by Demuth. A source for over-
views of some recent work at the inter-
section of algorithmic randomness 
with analysis and ergodic theory is the 
collection of slides at https://www.birs.
ca/cmo-workshops/2016/16w5072/files/. 
Similar applications occur in physics, for 
instance, in studying Brownian motion 
(for example, by Fouché16) and the amount 
of randomness needed for quantum 
mechanics (for example, by Gács18).

Another interesting application is to 
the study of tilings (of the plane, say). 
Let X[m, n] be the bits of the sequence X 
from positions m to n. One might think 
that for a Martin-Löf random X, we 
should have K(X[m, n])  n − m − O(1), or 
that at least K(X[m, n]) should not dip 
too far below n−m. This is not true, 
though, as random sequences must 
have long simple substrings, such as 
long runs of 0’s. (If we know that X has 
infinitely many runs of 6 consecutive 
0’s, but only finitely many of 7 consecu-
tive 0’s, then we can make money bet-
ting on the values of the bits of X by 
betting that the next value is 1 each 
time we see six consecutive 0’s.) 
However, for any e > 0, there are e-shift 
complex sequences X for which:

K(X[m, n])  (1 − e)(n − m) − O(1)

i	 Demuth came from the constructivist tradi-
tion, but independently discovered notions 
of randomness like Martin-Löf randomness 
by working on questions such as the ones dis-
cussed in this paragraph. See Kučera et al.26 for 
an account.

for all m and n. These sets can be coded 
to yield tilings with various interesting 
properties, such as certain kinds of 
pattern-avoidance. See, for instance, 
Durand et al.13, 14

Finally, randomness is thought of 
as “typicality” for many objects. Thus, 
if we wish to understand complex 
networks, we can try to model them 
using some kind of random graph. 
Khoussainov24 has recently given 
meaning to the idea of (infinite) algo-
rithmically random regular trees and 
other structures. Work is under way 
to adapt this idea to finite graphs and 
use it for practical applications.
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